首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9295篇
  免费   287篇
  国内免费   67篇
化学   6222篇
晶体学   83篇
力学   293篇
综合类   1篇
数学   1421篇
物理学   1629篇
  2023年   52篇
  2021年   93篇
  2020年   179篇
  2019年   134篇
  2018年   99篇
  2017年   112篇
  2016年   212篇
  2015年   169篇
  2014年   211篇
  2013年   447篇
  2012年   531篇
  2011年   632篇
  2010年   310篇
  2009年   252篇
  2008年   536篇
  2007年   517篇
  2006年   482篇
  2005年   496篇
  2004年   465篇
  2003年   309篇
  2002年   281篇
  2001年   87篇
  2000年   79篇
  1999年   53篇
  1998年   67篇
  1997年   87篇
  1996年   131篇
  1995年   85篇
  1994年   72篇
  1993年   92篇
  1992年   68篇
  1991年   82篇
  1990年   76篇
  1989年   64篇
  1988年   74篇
  1987年   68篇
  1986年   57篇
  1985年   126篇
  1984年   138篇
  1983年   94篇
  1982年   118篇
  1981年   117篇
  1980年   96篇
  1979年   91篇
  1978年   118篇
  1977年   103篇
  1976年   91篇
  1975年   78篇
  1974年   72篇
  1973年   64篇
排序方式: 共有9649条查询结果,搜索用时 23 毫秒
61.
This review is devoted to the application of MS using soft ionization methods with a special emphasis on electrospray ionization, atmospheric pressure photoionization and matrix‐assisted laser desorption/ionization MS and tandem MS (MS/MS) for the elucidation of the chemical structure of native and modified lignins. We describe and critically evaluate how these soft ionization methods have contributed to the present‐day knowledge of the structure of lignins. Herein, we will introduce new nomenclature concerning the chemical state of lignins, namely, virgin released lignins (VRLs) and processed modified lignins (PML). VRLs are obtained by liberation of lignins through degradation of vegetable matter by either chemical hydrolysis and/or enzymatic hydrolysis. PMLs are produced by subjecting the VRL to a series of further chemical transformations and purifications that are likely to alter their original chemical structures. We are proposing that native lignin polymers, present in the lignocellulosic biomass, are not made of macromolecules linked to cellulose fibres as has been frequently reported. Instead, we propose that the lignins are composed of vast series of linear related oligomers, having different lengths that are covalently linked in a criss‐cross pattern to cellulose and hemicellulose fibres forming the network of vegetal matter. Consequently, structural elucidation of VRLs, which presumably have not been purified and processed by any other type of additional chemical treatment and purification, may reflect the structure of the native lignin. In this review, we present an introduction to a MS/MS top–down concept of lignin sequencing and how this technique may be used to address the challenge of characterizing the structure of VRLs. Finally, we offer the case that although lignins have been reported to have very high or high molecular weights, they might not exist on the basis that such polymers have never been identified by the mild ionizing techniques used in modern MS. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
62.
A single‐component ambiphilic system capable of the cooperative activation of protic, hydridic and apolar H? X bonds across a Group 13 metal/activated β‐diketiminato (Nacnac) ligand framework is reported. The hydride complex derived from the activation of H2 is shown to be a competent catalyst for the highly selective reduction of CO2 to a methanol derivative. To our knowledge, this process represents the first example of a reduction process of this type catalyzed by a molecular gallium complex.  相似文献   
63.
A micromotor‐based strategy for energy generation, utilizing the conversion of liquid‐phase hydrogen to usable hydrogen gas (H2), is described. The new motion‐based H2‐generation concept relies on the movement of Pt‐black/Ti Janus microparticle motors in a solution of sodium borohydride (NaBH4) fuel. This is the first report of using NaBH4 for powering micromotors. The autonomous motion of these catalytic micromotors, as well as their bubble generation, leads to enhanced mixing and transport of NaBH4 towards the Pt‐black catalytic surface (compared to static microparticles or films), and hence to a substantially faster rate of H2 production. The practical utility of these micromotors is illustrated by powering a hydrogen–oxygen fuel cell car by an on‐board motion‐based hydrogen and oxygen generation. The new micromotor approach paves the way for the development of efficient on‐site energy generation for powering external devices or meeting growing demands on the energy grid.  相似文献   
64.
The photooxidation of a mustard‐gas simulant, 2‐chloroethyl ethyl sulfide (CEES), is studied using a porphyrin‐based metal–organic framework (MOF) catalyst. At room temperature and neutral pH value, singlet oxygen is generated by PCN‐222/MOF‐545 using an inexpensive and commercially available light‐emitting diode. The singlet oxygen produced by PCN‐222/MOF‐545 selectively oxidizes CEES to the comparatively nontoxic product 2‐chloroethyl ethyl sulfoxide (CEESO) without formation of the highly toxic sulfone product. In comparison to current methods, which utilize hydrogen peroxide as an oxidizing agent, this is a more realistic, convenient, and effective method for mustard‐gas detoxification.  相似文献   
65.
A method for modifying the external surfaces of a series of nanoscale metal–organic frameworks (MOFs) with 1,2‐dioleoyl‐sn‐glycero‐3‐phosphate (DOPA) is presented. A series of zirconium‐based nanoMOFs of the same topology (UiO‐66, UiO‐67, and BUT‐30) were synthesized, isolated as aggregates, and then conjugated with DOPA to create stably dispersed colloids. BET surface area analysis revealed that these structures maintain their porosity after surface functionalization, providing evidence that DOPA functionalization only occurs on the external surface. Additionally, dye‐labeled ligand loading studies revealed that the density of DOPA on the surface of the nanoscale MOF correlates to the density of metal nodes on the surface of each MOF. Importantly, the surface modification strategy described will allow for the general and divergent synthesis and study of a wide variety of nanoscale MOFs as stable colloidal materials.  相似文献   
66.
A sphere in air will roll down a plane that is tilted away from the vertical. The only couple acting about the point of contact between the sphere and the plane is due to the component of the weight of the sphere along the plane, provided that air friction is negligible. If on the other hand the sphere is immersed in a liquid, hydrodynamic forces will enter into the couples that turn the sphere, and the rotation of the sphere can be anomalous, i.e., as if rolling up the plane while it falls. In this paper we shall show that anomalous rolling is a characteristic phenomenon that can be observed in every viscoelastic liquid tested so far. Anomalous rolling is normal for hydrodynamically levitated spheres, both in Newtonian and viscoelastic liquids. Normal and anomalous rolling are different names for dry and hydrodynamic rolling. Spheres dropped at a vertical wall in Newtonian liquids are forced into anomalous rotation and are pushed away from the wall while in viscoelastic liquids, they are forced into anomalous rotation, but are pushed toward the wall. If the wall is inclined and the fluid is Newtonian, the spheres will rotate normally for dry rolling, but the same spheres rotate anomalously in viscoelastic liquids when the angle of inclination from the vertical is less than some critical value. The hydrodynamic mechanisms underway in the settling of circular particles in a Newtonian fluid at a vertical wall are revealed by an exact numerical simulation based on a finite-element solution of the Navier-Stokes equations and Newton's equations of motion for a rigid body.  相似文献   
67.
The linear viscoelastic behavior of a soda-lime-silica glass under low frequency shear loading is investigated in the glass transition range. Using the time-temperature superposition technique, the master curves of the shear dynamic relaxation moduli are obtained at a reference temperature of 566°C. A method to determine the viscoelastic constants from dynamic relaxation moduli is proposed. However, some viscoelastic constants cannot be directly measured from the experimental curves and others cannot be precisely obtained due to non-linearity effects at very low frequencies. The generalized Maxwell model is investigated from the experimental dynamic moduli without fixing the viscoelastic constants. A set of parameters is shown to be in good agreement with the experimental dynamic relaxation moduli, but does not give the correct values of the viscoelastic constants of the investigated glass. The soda-lime-silica glass exhibits a non-linear viscoelastic behavior at very low stress level which is usually observed for organic glasses. This non-linear behavior is questioned.  相似文献   
68.
Results from new experiments on the lubricated pipelining of emulsified waxy crude oil and No. 6 fuel oil are presented and compared with other sources of literature. A correlation formula which estimates the holdup fraction is introduced and evaluated for all available experimental data. A simple theory is given which is based on the concentric core-annular flow model and leads to a Reynolds number and friction factor which reduce a large body of experimental data onto one curve; with the best results in the high Reynolds number flow regime.  相似文献   
69.
Rectangular arrays of pyramidal recesses coated by silver film are investigated by means of polarization‐resolved nonlinear microscopy at 900 nm fundamental wavelength, demonstrating strong dependence of the dipole‐allowed SHG upon the lattice parameters. The plasmonic band gap causes nearly complete SHG suppression in arrays of 650 nm periodicity, whereas a sharp resonance at 550 nm periodicity is observed due to excitation of band edge Bloch states at fundamental frequency, accompanied by symmetry‐constrained interactions with similar modes at the second‐harmonic frequency. Additionally, coupling with modes at the bottom side of the silver film may lead to extraordinary optical transmission, opening a channel for SHG from the highly nonlinear GaAs substrate. Changing the lattice geometry enables SHG intensity modulation over three orders of magnitude, while the effective nonlinear anisotropy can be continuously switched between the two lattice directions, reaching values as high as ±0.96.

  相似文献   

70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号